Optimizing Realistic Rendering with Many-Light
Methods

SIGGRAPH 2012 Course

Course Notes

This is a preliminary version. The final version is available from
http://cgg.mff.cuni.cz/~ jaroslav/papers/mlcourse2012.

Organizers

Jaroslav Kfivanek
Charles University, Prague

Milo§ HaSan
UC Berkeley

Lecturers

Adam Arbree
Autodesk, Inc.

Carsten Dachsbacher
Karlsruhe Institute of Technology

Alexander Keller
NVIDIA ARC GmbH

Bruce Walter
Cornell University

http://cgg.mff.cuni.cz/~jaroslav/papers/mlcourse2012

Abstract

With the recent improvements in hardware performance, there has been an increased
demand in various industries, including game development, film production, or archi-
tectural visualization, for realistic image rendering with global illumination. However,
the inability of the state of the art algorithms to meet the strict speed and quality re-
quirements fosters more research in this area. Many-light rendering, a class of methods
derived from the Instant Radiosity algorithm proposed by Keller [1997], has received
much attention in recent years. By reducing light transport simulation to rendering the
scene with many light sources, the many-light formulation offers a unified view of the
global illumination problem. Unlike with other GI algorithms, the quality-speed trade-
off in the many-light methods (in terms of the number of lights) is able to produce
artifact-free images in a fraction of a second while converging to the full GI solution
over time. This formulation is therefore potentially able to cater to all of the aforemen-
tioned industries.

The primary goal of this course is to present a coherent summary of the state of the
art in many-light rendering. The course covers the basic many-light formulation, as
well as the recent work on its use for computing global illumination in real-time, on
improving scalability with a large number of lights, on using many-lights as a basis for
a full GI solution, and also on rendering participating media. The course will focus on
the clarity of the underlying mathematical concepts as well as on the practical aspects
of the individual algorithms. An important part of the course will be devoted to the
practical considerations necessary for the use of many-light methods in the Autodesk
360 Rendering service.

Intended audience
Industry professionals and researchers interested in recent advances in realistic render-

ing with global illumination. Software developers and managers looking for the right
global illumination solution for their application will also benefit from the course.

Prerequisites

Familiarity with rendering and with concepts of global illumination computation is
expected.

Level of difficulty

Intermediate

Syllabus

1.

Introduction (KFivdnek)
(5 min)

Instant Radiosity - principles and practice (Keller)
(30 min)

— Light transport simulation using many point light sources
— Path space partitioning
— Consistent generation of light paths

Handling difficult paths (Hasan, K¥ivdnek)
(30 min)

— Kollig-Keller method for dealing with singularities and its limitations
— Virtual spherical lights
— Improved VPL distribution and local VPLs

Scalability with many lights I (Walter)
(25 min)

— Lightcuts and Multidimensional Lightcuts

Break
(15 min)

Scalability with many lights II (Hasan)
(20 min)

— Matrix row-column sampling, Matrix Slice Sampling
— Visibility clustering

Real-time many-light rendering (Dachsbacher)
(35 min)

— Many-light generation with Reflective Shadow Maps

— Fast rendering with many lights via Imperfect Shadow Maps and Micro-
Rendering

— Approximate bias compensation for high-quality rendering of surface and
volume lighting

Many-lights methods in Autodesk 360 Rendering (Arbree)
(30 min)

What is Autodesk Cloud Rendering?

Our many-lights rendering algorithm

Advantages of a many-light solution

Discussion of results

Conclusions / Q & A (all)
(5 min)

Course presenter information

Jaroslav Ktivanek Charles University, Prague
Jjaroslav.krivanek @ mff.cuni.cz

Jaroslav is an assistant professor at Charles University in Prague. Prior to this ap-
pointment, he was a Marie Curie post-doctoral research fellow at the Cornell Univer-
sity Program of Computer Graphics, and a junior researcher and assistant professor at
Czech Technical University in Prague. Jaroslav received his Ph.D. from IRISA/INRIA
Rennes and the Czech Technical University (joint degree) in 2005. In 2003 and 2004
he was a research associate at the University of Central Florida. His primary research
interest is realistic rendering and global illumination.

Milos Hasan UC Berkeley
milos.hasan @ gmail.com

Milo$ Hasan is a post-doctoral researcher at the University of California, Berkeley. He
received his Ph.D. from Cornell University in 2009, after which he spent one year as
a post-doctoral fellow at Harvard University. His primary research interest is in the
area of light transport, including efficient global illumination algorithms, precomputed
techniques, GPU-oriented algorithms, and applications to fabrication and visualization.

Adam Arbree Autodesk, Inc.
adam.arbree @ autodesk.com

Adam Arbree is a principle engineer developing rendering applications for Autodesk.
He received his Ph.D. from Cornell University in 2009 and, in his dissertation, he cre-
ated scalable many-lights rendering algorithm for subsurface scatting. For the last two
years, he has been designing and building a physically accurate, many-lights rendering
system for architectural visualization for Autodesk. The resulting product, Autodesk
360 Rendering, premiered in September 2011 as part Autodesks global launch of cloud
services.

Carsten Dachsbacher Karlsruhe Institute of Technology
dachsbacher@kit.edu

Carsten Dachsbacher is Full Professor for computer graphics at the Karlsruhe Insti-
tute of Technology, Germany. Prior to joining KIT, he has been Assistant Professor at
the University Stuttgart, and post-doctoral fellow at REVES/INRIA Sophia-Antipolis,
France. He received a PhD from the University of Erlangen, Germany. His research in-
cludes real-time computer graphics, (interactive) global illumination, GPU techniques,
and visualization. He has published several articles at various conferences including
SIGGRAPH and Eurographics. Carsten has been a tutorial speaker at SIGGRAPH,
Eurographics, and the Game Developers Conference.

Alexander Keller NVIDIA ARC GmbH
keller.alexander @ gmail.com

Alexander Keller is a member of NVIDIA Research and leads advanced rendering
research at NVIDIA ARC GmbH, Berlin. Before, he had been the Chief Scientist
of mental images and had been responsible for research and the conception of future
products and strategies including the design of the iray renderer. Prior to industry,
he worked as a full professor for computer graphics and scientific computing at Ulm
University, where he co-founded the UZWR (Ulmer Zentrum fur wissenschaftliches
Rechnen). Alexander Keller holds a PhD in computer science, authored more than 21
patents, and published more than 40 papers mainly in the area of quasi-Monte Carlo
methods and photorealistic image synthesis.

Bruce Walter Cornell University
bjw @ graphics.cornell.edu

Bruce Walter is a Research Associate at the Cornell Program of Computer Graphics.
His current research interests are expanding the capabilities of physically-based ren-
dering and global illumination algorithms with respect to robustness, scalability, and
generality. He has published many related research papers at SIGGRAPH and else-
where. He also served a project lead for trueSpace product at Caligari, and was a
post-doc in iMAGIS laboratory in Grenoble, France, and earned a Ph.D. from Cornell
and a B.A. from Williams college.

Introduction

Jaroslav Krivdanek

(Optimizing) Realistic Rendering
with Many-Light Methods

An ACM SIGGRAPH 2012 course presented by

Jaroslav Kfivanek Milos Hasan Adam Arbree
Charles University in Prague UC Berkeley Autodesk

Carsten Dachsbacher Alexander Keller Bruce Walter
Karlsruhe Institute of NVidia Cornell University
Technology

This course covers a group of global illumination algorithms known as “many-light
methods”, or “VPL-rendering methods”. (VPL = virtual point light)

Realistic Rendering with Many-Light Methods

—Introduction —

Jaroslav Kfivanek
Charles University in Prague

Global [llumination

No global illumination Global illumination
(direct illuminatin only) (direct + indirect illum.)

Global illumination (Gl) is indeed one of the most important aspects of realistic rendering
as you can see in this example. Global illumination fills shadows with natural light and adds
illumination gradients around geometry features, that the human eye is used to seeing in
reality.

Global [llumination

© Jonas Balzer

R (L R

© nikki Candelero, vray gallery

Gl is extensively used in architectural visualization, product design, and in the movie
industry.

Inter-reflection

Slide credit: Michael Bunnell

Global illumination is due to multiple inter-reflections of lights, as shown in the example
above.

Rendering of realistic images with global illumination then involves simulating these inter-
reflections.

Many-light rendering

* Based on Instant radiosity [keller 1997]
* Approximate indirect illumination by

Virtual Point Lights (VPLs)
1. Generate VPLs . Render with VPLs

The many-light formulation, covered in our course, provides a particularly efficient
approach to simulating the light inter-reflections.

These methods originate from the Instant Radiosity algorithm proposed by Alexander
Keller. The main idea is to approximate indirect illumination by a number so called Virtual
Point Lights, or VPLs.

A basic VPL rendering algorithm works as follows: In the first step, the VPLs are distributed
on scene surfaces by tracing particles from light sources. In the second step, the color of a
pixel is computed by summing the contributions from all the VPLs to the surface point(s)
visible through that pixel.

In other words, the problem of computing indirect illumination has been reduced to the
computation of direct illumination from many-lights, hence the name of the methods.

Many-lights: Advantages

« Unified approach
— Everything represented by virtual lights

— Area light, environment maps, indirect
illumination

One of the most important advantages of the many-light formulation is that it unifies the
rendering problem to computing direct illumination form a (potentially large) number of
lights, the VPLs.

Indeed, large area lights, environment maps, and indirect illumination are seamlessly
handled in the same way. All that is needed is to convert the illumination to a set of VPLs.

Many-lights: Advantages

» Spans a wide range of quality/cost ratios

Interactive rendering High-fidelity rendering
16k VPLs, 5.5 fps 17M VPLs, 5 min

5.5 fps, 2562, 16k
from [Ritchel et al., SigAsia 2008] from [Davidovic et al., SigAsia 2010]

The popularity of many-light methods is also due to their wide applicability, from
approximate interactive rendering to high-fidelity offline rendering. This is due to the fact
that even with a limited number of VPLs, the generated images, though incorrect, provide
a visually plausible approximation of the correct solution.

Main technical issues

* Making it fast (as always)
« Making it "asymptotically fast", i.e. scalable

* Making it accurate

The main technical issues that need to be addressed when using many-light methods in
practice are listed on the slide.

First, as usual, we want to make the rendering fast. This involves especially accelerating the
visibility tests required to compute illumination from VPLs. Such improvements lead to a
constant factor speed-up.

However, the many-light methods lend themselves to asymptotic speed improvements, i.e.
the rendering time can grow much more slowly than the number of VPLs. A prime example
of this approach is the Lightcuts algorithm.

Finally, in the basic form, many-light methods suffer from some approximations. Special
care is needed to make these methods applicable in high-fidelity rendering applications.
The goal of our course is to cover all of these issues.

Course lecturers

* (in the order of appearance)

* Jaroslav Kfivanek, Charles University in Prague
* Alexander Keller, NVidia

* Milos Hasan, UC Berkeley

* Bruce Walter, Cornell University
* Carsten Dachsbacher, KIT

* Adam Arbree, Autodesk

The material will be presented by researchers who were originally involved with the
development of the various many-light methods.

10

* 2:00 (05 min)
« 2:05 (30 min)

Course Overview

... Introduction & Welcome (Kfivanek)

... Instant Radiosity (Keller)

* 2:35 (30 min) ... Handling difficult light paths (Hasan, Kfivanek)
¥ ror in).... Scalability wit! lial Wal

3:30 (15 min) ...

3:45 (20 min) ...
4:05 (35 min) ...
4:40 (30 min) ...
5:10 (05 min) ...

Break

Scalability with many lights Il (Hasan)
Real-time many-light rendering (Dachsbacher)
ML in Autodesk® 360 Rendering (Arbree)
Conclusion - Q & A (All)

11

Instant Radiosity - principles
and practice

Alexander Keller

Slides for this part of the course are provided in the final version available from
http://cgg.mff.cuni.cz/~ jaroslav/papers/mlcourse2012.

http://cgg.mff.cuni.cz/~jaroslav/papers/mlcourse2012

Handling difficult paths

Milos Hasan, Jaroslav Kvivdinek

Realistic Rendering with Many-Light Methods

Handling Difficult Light Paths

(virtual spherical lights, improved VPL distribution)

Milos Hasan
UC Berkeley

Jaroslav Krivanek
Charles University in Prague

Realistic Rendering with Many-Light Methods

Virtual Spherical Lights

In this part of the course, | will discuss virtual spherical lights, a technique that can reduce
the energy loss problems encountered with standard formulations of virtual point lights.

Glossy Inter-reflections

One important application is architectural or industrial previews. They often contain a
significant fractions of glossy materials, which create interreflections that cannot be
neglected. These are somewhat extreme examples: their appearance is completely
dominated by glossy inter-reflections. But they do present nice examples of scenes that will
bring classic many-light algorithms to their knees.

Problem

Path tracer Instant radiosity Difference image

So let’s say we run standard instant radiosity on this glossy Cornell box. If we do it naively,
we quickly find that we have to play tricks which will remove most of the interesting
interreflection effects. These tricks are: consider only diffuse VPLs and apply plenty of
clamping. Let’s look at these in more detail.

Emission Distribution of a VPL

e Cosine-weighted BRDF lobe at the VPL
location

Here is what a VPL emission function should look like to give unbiased results: it is simply a
combination of a diffuse and glossy BRDF lobe corresponding to the incoming direction of
the VPL, multiplied by the cosine term.

We can easily see the issue — if the surface is highly glossy, the BRDF lobe will function as a
»laser” light that will create unacceptable spikes in random places around the scene. This
problem is usually avoided by not including the glossy contribution of the VPL, which is
clearly suboptimal.

Clamping the Remaining Spikes

As||p—x|— 0, VPL contribution = «

e Common solution: Clamp conttribution

However, this will not be sufficient. As we move the VPL location p and the shading point x
closer and closer to the corner, the VPL contribution will go to infinity. This problem will be
even worse if the BRDF at x is also glossy (remember, we only removed the glossy BRDF

from the VPL location p).

The common solution to this is to clamp the VPL contribution to a user-specified maximum
value. This not only removes illumination, but introduces another tricky parameter to the
user, which is difficult to set autmatically.

The Missing Components

Missing due to clamping

These two approximations cause a large chunk of the indirect illumination to be missing.
Clearly, neither clamping and using diffuse-only VPLs can be neglected in our search for a
better solution.

Real Scenes: Same Problem

Instant radiosity: illumination loss Reference

One may think that this problem only occurs in a contrived scene such as the Cornell box,
where we made all surfaces glossy. This is not the case: in this kitchen scene, instant
radiosity some important parts of light transport, which results in serious illumination loss
on glossy surfaces, as you can see on the range hood or the counter.

Clamping Compensation

e Compute the missing components by path
tracing [Kollig and Keller 2004]

Path traced compensa » e 2| | Reference

* Glossy scenes

— As slow as path-tracing everything

The illumination loss problem hasn’t been extensively discussed in previous work with the
exception of the paper by Kollig and Keller, who propose to compensate for the missing
energy by path tracing. Unfortunately, in glossy scenes, their compensation methods can
be nearly as expensive as path tracing the entire image.

QOur Method

* New type of light: Virtual Spherical Light

Our method: 4#minutes

Our idea, on the other hand, is to prevent the illumination loss in the first place, rather
than trying to compensate for it. We achieve this by introducing a new type of light, the
VSL, that overcomes some of the problems of VPLs.

With this new type of light, we are able to render images very similar to the reference yet
in much shorter time.

10

VPL to VSL

Non-zero radius (

Integration over
non-zero solid
angle

More specifically, we well spread the light energy over the surfaces inside the sphere of
radius r centered at the light position p. And the contribution of the light will be computed
as an integral over the solid angle subtended by the sphere.

This can be seen as an analogy to photon mapping: A photon contributes to all surfaces
within radius r, and an additional final gather operator uses the “splatted” illumination to
light other surfaces.

11

Light Contribution

Non-zero radius (

Integration over
non-zero solid

angle \

Let’s write down the formula for the contribution of such a light to the surface point x. We

have the integration over the solid angle. The integrand is a product of the following terms:

the cosine weighted BRDF at the surface, next, the BRDF at the point y n the vicinity of the
light location. Finally, we have an indicator term that is zero for all the directions that
correspond to surface point y outside the sphere. We normalize the integration by the
expected surface area inside the sphere, pi*r*2, and multiply by the light flux.

To avoid this indicator term, we could define the light contribution as an integral over a
disk area. Unfortunately, doing that re-introduces the infamous 1/dist*2 term and
produces bad results (we tried it).

12

Light Contribution

Non-zero radius (

Integration over
non-zero solid

angle \

Problem: Findingy
requires ray-tracing
X

o

T2

L fo(x) cos b £.(3) (b —[y]) <)l

3

Unfortunately, this formulation requires finding the point y for all directions | inside the
cone, which requires ray tracing. This is clearly not feasible.

13

Simplifying Assumptions

Non-zero radius (

Integration over
non-zero solid

angle \

e Constantin Q:
— Visibility
— Surface normal
— Light BRDF

e Taken from p, the
light location

To produce a computationally convenient approximation to the previous formula, we make
the following simplifying assumptions. We assume that the visibility, the surface normal
and the BRDF are constant inside the sphere. And we take them from the light location p.

14

Light Contribution Updated

Non-zero radius (

Integration over
non-zero solid
angle

With these assumptions, we can write a formula for the contribution of a VSL.

The indicator function on the right will be approximated by a cosine term — this

approximation tends to be correct as the distance between the light and the shading point
increases.

Now we have arrived at a nice, clean formulation of the VSL contribution: it becomes an
integral over the conical solid angle given by the sphere radius, and the integrand will be

the product of two BRDFs and two cosine terms: one each for the receiver and the light
location.

15

Virtual Spherical Light

 Allinputs taken from x and p
— Local computation

e Same interface as any other light
— Can be implemented in a GPU shader

* Visibility factored from the integration
— Can use shadow maps

This formulation is very practical — no ray-tracing is necessary to compute the contribution,
and all necessary parameters are local to either the shading point or the light. It still does
require Monte Carlo integration, but this is purely numerical and can be done in a shader.
We can use shadow maps for visibility if desired, as usual.

16

Computing the VSL integral

e Stratified Monte Carlo in a shader

Cone sampling

’a A

BRDF 2 sampling Combined sampling

As | mentioned, we can use stratified Monte Carlo to compute the VSL integral. One
possible issue, in case one or both of the BRDFs involved have a glossy component, is that
uniform sampling of the solid angle cone will not be well adapted to the integrand and lead
to noise.

However, we can use multiple importance sampling — a variation of the same technique
used in bidirectional path tracing. In addition to cone sampling, we can importance-sample

either of the two BRDFs, and combine these estimators using the classic balance heuristic.

You can find the shader that computes the VSL integral online.

17

Implementation

e Matrix row-column sampling [Ha%an et al. 2007]
— Shadow mapping for visibility
— VSL integral evaluated in a GPU shader

* Need more lights than in diffuse scenes

 VSL radius proportional to local VSL density
— determined by k-NN queries

Our implementation uses the row-column sampling technique to reduce the number of
VSLs, which | will also describe later, with shadow mapping for visibility.

However, the VSL can be included into any many-light renderer, even lightcuts, as Adam
Arbree will describe later.

We generate about 200,000 VSLs and reduce them to 10,000 using MRCS. These numbers
are higher than in diffuse scenes — the VSL does not magically make glossy scenes as esy as
diffuse, but does make them tractable for many-light approaches.

An important detail is setting the VSL radius: we find the k nearest virtual lights (say 10)
and set the radius as a multiple of that. This makes the radii larger in areas where lights are
sparse.

18

Results: Kitchen

e Most of the scene lit
indirectly

Many materials glossy

and anisotropic

Path tracing:
316 hours (8 cores) = =

Clamped VPLs New VSLs:
34 sec (GPU) ~2000 lights 4 min 4 sec (GPU)=1000

Here’s an example of the results we can get with VSLs. This scene is lit by mostly indirect
light, through reflection from the shiny metallic surface on the right. There are several
other highly glossy and anisotropic materials.

The image computed using the classic approach of clamping and diffuse VPLs looks clean
but obviously dark, with some metals close to black.

In constrast, the VSL image is quite close to the path-traced ground truth, with a bit of
blurring.

19

Results: Disney Concert Hall

e Curved walls with no
diffuse component

e Standard VPLs
cannot capture any
reflection from walls

A similar result arises in this model of the Disney concert hall, lit by a sun-sky model.

The walls of the building are purely glossy with no diffuse component: the blue color comes
from the sky and the brown is a reflection of the ground.

Obviously, using diffuse VPLs will not capture any illumination off the walls; on the other
hand, with VSLs the image looks quite close to the reference, again with some blurring.

20

Results: Anisotropic Tableau

e Difficult case

e Standard VPLs
capture almost no
indirect illumination

|

8 ores)

Clamped VPLs: /SLs:
32 sec (GPU) - 1000 lights 1 min 44 sec (GPU) - 5oo0 lights

This tableau consists of an anisotropic metallic plane with some objects, and 3 strong
directional lights. This is a really bad case for clamping, which removes much of the
reflection. On the other hand, VSLs capture it nicely, only slightly blurred.

21

Limitation: Blurring

e VSLs can blur illumination
* Converges as number of lights increases

5,000 lights - blurred 1,000,000 lights - converged

From the results it is apparent that the main limitation of VSLs is bias in the form of
blurring. However, this is a very predictable effect, and in many cases may be acceptable. It
is also consistent similar to photon mapping — results get more correct as VSL number

increases (and therefore VSL radii decrease).

Jaroslav will later decribe the local light technique, which improves upon this limitation of
VSLs, at the cost of somewhat higher complexity.

22

Realistic Rendering with Many-Light Methods

Improved VPL distribution

In this part of the course, | will discuss various approaches for generating VPLs where they
are most needed for a given camera view.

VPL rendering

1. Distribute VPLs 2. Render with VPLs

Let us start by reviewing the classic VPL rendering algorithm, instant radiosity.

In the first step, the VPLs are distributed on scene surfaces by tracing particles from light
sources.

In the second step, the image is rendered by summing contributions from all the VPLs.

In this part of the course, | will focus on various approaches to distributing the VPLs.

24

Why alternate VPL distribution?

e VPL may not end up where need

— Large environment w/ complex visibility

— Local light inter-reflections

The need to develop alternate VPL distribution approaches follow from the fact that with
the basic VPL tracing algorithm, the VPLs may end up in regions where they do not
contribute significantly to the image. This will be the case especially in large environments
where the camera is looking at a small portion of the scene. In addition, VPL distributions
generated by the basic VPL tracing algorithm cannot be used to render local light inter-
reflections.

25

Example —local light inter-reflections

artifacts No local light
interactions

Here is an example of the inability of VPLs to reproduce local light inter-reflections. The
number of VPLs along the edges is insufficient to render the local inter-reflections, resulting
in artifacts in the form of light splotches.

The usual way of dealing with these artifacts the clamping that we discussed previously,
where we clamp limit the contribution of a single VPL to a prescribed maximum value.

But this selective energy removal can severely change material appearance, as you can see
in the image on the right.

A better solution would be to ensure that more VPLs are generated in the visible areas

along the edges.

26

Purpose & approach

* Purpose
— Ensure VPLs end up where needed

* Approaches
— Rejection of unimportant VPLs
— Metropolis sampling for VPL distribution
— Distribute VPLs by tracing paths from the camera

So, the purpose is to get the VPLs where they are most needed.

There has been a number of approaches proposed in the literature for this purpose and |
will discuss some of them in the remaining part of my contribution.

The simplest approach is to apply rejection sampling, where VPLs that do not significantly
contribute to the image are rejected.

Second, we can use a more advanced sampling algorithm such as Metropolis sampling.
And finally, we can distribute the VPL by tracing paths from the camera instead of from
light sources.

27

Rejection of unimportant VPLs

28

Rejection of unimportant VPLs

* Autodesk 360 Rendering
— Covered by Adam later in the course

e [Georgievetal., EG 2010]

— Covered on the following slides
(courtesy of lliyan Georgiev)

e Good for large environments but not for local
interactions

A form of rejection sampling is used for VPL distribution in the Autodesk 360 Rendering
solution that will be later described by Adam Arbree.

So | will only briefly mention the approach presented by Georgiev et al. in their EG 2010
short paper.

29

VPL rejection —idea

* Accept VPL proportionately to their total
image contribution

— Reject those that contribute less than average

The main idea is very simple:
They use the exact same VPL tracing algorithm as in instant radiosity but they
probabilistically reject the VPLs if their image contribution is less than an average.

30

VPL rejection —algorithm

e Want N VPLs with equal image contribution ® /N

e Foreach VPL candidate i with energy L;

— Estimate total image contribution ®;

. | P,
— Accept w/ probability m

(update energy of an accepted VPLto L,/ p;)

So our goal is to end up with N VPLs, each having some “average” total contribution to the
image

31

Estimating image contribution

* No need to be precise

e Estimating @, (average VPL contribution)
— Based on a few pilot VPLs

e Estimating @, (contribution of VPL candidate i)
— Contribution to only a few image pixels

So how do we estimate the target “average” VPL contribution? A simple way to do itis to
run a number of pilot VPLs and render a low-resolution image. Another possibility is to use
information form the previous frame, if rendering an animation.

To estimate the image contribution of a candidate VPL, we simply render a “low-res” image
by picking only a couple of pixels.

There is no need to be very precise - it’s no use to spend much time on estimating the VPL
contributions. The algorithm will produce correct results no matter how accurately the VPL
contribution is estimated.

32

Instant Radiosity

Results

[Georgiev et al. 2010]
(0.07 acceptance)

33

Results

NN

Average acceptance probability: 0.28

34

(an)
0o
o
.V.l
=
o
(g0}
0
o
—
Q.
(]
9
(=
©
+—
(o)
(]
o
)
({0}
()
(@)
(o]
e
S
<

g 5——5 »
ity A \ N

I

AN

i

35

Georgiev et al. 2010 — Conclusion

e Cheap & simple
e Canhelpalot

e "One-pixel image” assumption
— Not suitable for local light inter-reflections

To conclude, VPL rejection sampling is cheap and simple and can help a lot. There’s really
no reason for not using it, especially in mostly diffuse scenes.

The problem is that it makes the “one-pixel image” assumption — it will not help us to
resolve the local inter-reflection problem.

36

Metropolis sampling for VPL

distribution

37

Metropolis sampling for VPL distrib.

e “Metropolis instant radiosity”
[Segovia et al., EG 2007]

e Good for large environments but not for local
interactions

38

* Slides will be added in the final version

— please see the course web page

39

Sampling VPLs from the camera

40

Sampling VPLs from the camera

e Guaranteed to produce VPLs important for the
Image

e Technicalissues
— Connection to light sources
— Computation of pdfs

Another option is to distribute the VPLs by tracing paths from the camera instead of from
the light sources.

This approach is bound to produce VPLs in locations important for the image to be
rendered, but it also has some issues:

First, we need to explicitly connect these VPLs to the light sources so that they can form
complete light transport paths.

Second, computing the VPL intensity involves the evaluation of the probability density of
generating the particular VPL position. The probability calculation is significantly more
complex (and costly) when the VPLs are generated from the camera.

41

Sampling VPLs from the camera

e “Bidirectional instant radiosity”
[Segovia et al., EGSR 2006]

e “Local lights”
[Davidovic et al., SigAsia 2010]

On the following slides, | will discuss the method proposed by Davidovic et al. in our
SIGGRAPH Asia 2010 paper.

42

[Davidovic et al. 2010]

 Splitillumination

Clamping Global
component
Visibility clust.

Local
component
Local VPLs

We use the idea of separating the light transport into the clamped, global component, and
the local component, as previously discussed by Alexander and Milos.
The global component accounts for the long-distance light transfer, while the local

component corresponds to the short-range inter-reflections, and indirect glossy highlights.

We take advantage of the specific structure of each of the two components to design a
solution for each of them that is substantially more efficient than a general Gl solution.
Specifically, we handle as much energy as possible in the global component which leaves
only the local inter-reflections for the local component, which we handle by the so called
local VPLs that are distributed by tracing paths from the camera.

43

Review of compensation

* Kollig & Keller compensation

Clamped
energy

3) Contribute

Let us start with the overview of the standard Kollig & Keller compensation. They first trace
a ray from the hit point, and connect the target to global light to obtain the intensity. This
path tracing result is then used in place of the clamped away energy.

This is a lot of effort for compensating just a single pixel.

44

Local lights —idea

e Qur approach

Create
local light

Contribute
toatile

Our idea is to create a VPL at the intersection of the camera path. This way, the cost of
tracing that path is amortized by letting it contribute not just to the pixel that generated
the VPL, but also to its neighboring pixels.

With this basic idea, let us take a closer look at what is necessary to actually make it work.

45

Local lights — technical solution

e Qur approach

Probability
density

from
tile pixels

The first important thing we have to compute is the probability density of the generated
local VPL.

We cannot simply use the probability with which it has been generated, but we have to

sum the probabilities over all the pixels in the tile it contributes to. The reason is that all

the neighboring pixel could potentially have generated the VPL at this particular location.

The second important thing is that if we used a fixed tile grid, the boundaries would be
fairly visible. To break this coherence, we jitter the tiles for each VPLs.

46

Local lights — technical solution

e Qur approach

Reject 50-75%
X 2-4x speedup

One-sample -—— Clamped

visibility <= energy=o

e Key idea: Tile visibility approximation

Now we come to the part that would simply not be possible without splitting the light
transport.

To compute the full probability density for our light, we would normally need to compute
visibility to all pixels, which would be prohibitively expensive.

However, we do have the global component that contains most of the energy and handles
most of the shadows.

The local lights can then have their visibility approximated because they only handle local
inter-reflections.

We approximate it by just one visibility sample, which is actually the ray that generated the
light in the first place.

So the key insight here, the light transport split made tile visibility approximation possible.
The second thing the split allows us to do is rejecting lights. Not all local lights actually have

contribution to the tile they belong to, and we can flat out reject these, giving us another
2-4x speedup.

47

The complete local solution

Generate local Reject Connect to
lights zero contrib global lights

Contribute Local solution
to atile (compensation)

So, for the overview of the whole process.

We generate local lights

Reject lights with zero contribution

Connect the surviving local lights to global lights
Have them contribute to a tile

And after repeating this about 20 million times, we get the final local solution.

48

The complete local solution

Global solution
(clamped)

Indirect illumination
solution

Now we have the result of the local solution. We simply add the result of the global
solution and obtain the final indirect illumination solution.

The global solution can be computed by any VPL method, for example Lightcuts. In the
original paper we used used a visibility clustering algorithm.

49

* locallights:

Results

17,100,000

50

Results

VSL: 6 min 25 sec

* locallights: 17,200,000

Here we see that the local lights nicely capture this highlight from metal stool leg or the
reflection of the paper towel on the metal back wall, something that cannot be done with
the “globally distributed” VSLs.

51

Limitations

reference: 6360 min

T |

* Loss of shadow definition
* Small loss of energy

However, this scene also shows some of the limitations the method has.
There is a loss of definition of the shadows behind the bottles.
This is caused by the fact that the local lights on the kettle in the front contain too much

energy. Pushing more energy into the global component could resolve this problem.

One detail we did not mention is that in some of the scenes we still need slight clamping
even on the Local VPLs, causing some darkening here. This can be solved by interpreting
the Local VPLs as Local VSLs.

52

Local VPLs — Conclusions

e Good for local inter-reflections

 Really useful only when used in conjunction
with a separate “global” solution

To conclude, distributing VPLs by tracing paths from the camera is very useful for resolving
local inter-reflections.

They are best used in conjunction with a separate “global” solution which can take care of
the smooth, long distance light transport in the scene.

53

>
o
>~
=
c
(©
e
T

54

Scalability with many lights 11

Milos Hasan

Scalability with many lights Il

(row-column sampling, visibity clustering)

MiloS Hasan

Scalability with many virtual lights

 Alternatives to lightcuts
— Matrix row-column sampling
— Visibility clustering
* Potential advantages
— Shadow mapping instead of ray tracing
— Simpler to implement
— No bounds on BRDFs required
— Faster in occluded environments

In this part of the course, | will talk about several techniques that improve the
scalability of many-light methods with the number of virtual lights. In other words
— we have reduced our rendering problem to computing the connections

between many VPLs and many receivers, or “gather points”.

Of course, one way to do it are the lightcuts algorithms that Bruce described,
which are very reliable ad high-quality. | will introduce alternative techniques like
row-column sampling and visibility clustering, which can have some other
advantages.

For example, one may be able ot use shadow maps instead of ray casting for
visibility checking, which tends to be faster in most cases. No bounds on shders
are required, which can lead to simpler implementations. There may also be
advantages in highly occluded environments, where lightcuts will conservatively
evaluate illumination assuming full visibility.

A Matrix Interpretation

Lights (100,000)

Pixels
(2,000,000)

To get started in describing the algorithms, we first need to interpret the many
light problem as a matrix of light-pixel interactions. This means that each
element of the matrix is the contribution of a single light to a single pixel.

So, the columns of the matrix are really images rendered with a single point
light.

The rows represent contributions of all the lights to a particular pixel.

Problem Statement

e Compute sum of columns

Lights

* Note: We only have oracle A(i,))

In this setting, the ideal image we would like to render is equal to the sum of the
columns of the matrix.

Or, to put it differently, the color of each pixel is equal to the sum of the matrix
row corresponding to that pixel.

It is important to note that we’re not given the matrix data, we just have an
“oracle” — a function that can evaluate the elements on demand. Our goal is to
compute the sum without evaluating most of the elements. How is this even

possible?

Matrix has structure

643 Iights

"IU L Y
Lty (1 1 SOt
|m|:u H|I' LR

B
)
X
a
o
o
o)

A simple scene

30 x 30 image
The matrix

The trick is that the matrix is highly structured. Here is an example with a
Cornell box. with a single direct light, and Numerically, the matrix often close to
low-rank: its columns can often be approximated by linear combinations of other

columns.

Therefore, we can get away with computing only a very small subset of the
elements, and still gather enough information to render an accurate image.

Low Rank Assumption Violation

» Bad case: lights with very local contribution

Of course, the low ran assumption is not always valid — here is an example of a
really bad case, where the light’s contributions are linearly independent.
Fortunately, this does not usually happen in practice.

Sampling Pattern Matters

Lights

Point-to-point visibility: Ray-tracing

Point-to-many-points visibility: Shadow-mapping

So, we want to sample a subset of the matrix elements, but which ones should
we choose?

If we sample complete rows and columns, we can use GPU shadow mapping as
our visibility algorithm. This way we can compute elements at very high rate.
Futhermore, it is easier to reason about rows and columns, so even if we use a
ray-tracer, it may still be an advantage to sample like this.

Row-Column Shadow Duality

e Columns: Regular Shadow Mapping
* Rows: Also Shadow Mapping!

Shadow map
at sample
position

Shadow
map at light
position

Surface
samples

One may wonder how to compute the row contributions using shadow mapping.
After all, shadows normally come from the light!

However, shadow mapping is simply a way to determine the visibility from a
point to many other points at once.

We can compute a cube shadow map at the VPL position, and determine the
visibility of the surface samples, as usual. Or, we can compute the cube at the
receiver position, and query the light positions against it.

Exploration and Exploitation

compute rows NOW 10 €ho0se (ohite columns weighted

(explore) columns and (exploit) sum
weights?

OK, we know how to compute rows and columns. How do we design the rest of
the algorithm based on them? We use an idea that combines exploration and
exploitation.

As a first step, we explore the structure of the matrix by computing a small,
randomly chosen subset of rows.

Next, we analyze the gathered information, and decide which columns to
choose and their appropriate weights.

The exploitation step then computes the selected columns, which are finally
accumulated into an image.

The only thing missing | the contents of the black box that analyzes the rows
and chooses the columns.

Reduced Matrix

Reduced
columns

To understand this, let’ s take the rows that we computed in the exploration
stage,

And assemble them into this long, but not very tall reduced matrix.

Now let’ s flip attention to the columns of this matrix, which we’ Il call reduced
columns.

These can in fact be thought of as tiny images that are sub-sampled versions of
the full columns.

Clustering Approach

JLLAEEE— (L0

oy ; Choose
eauce Choose k clusters representative
columns

columns

We will use a clustering approach to choosing columns: we cluster similar
reduced columns, and we pick a representative in each cluster. Of course, we
can arbitrarily re-shuffle the columns — there’s no such thing as “neighboring
columns”.

Note that this is actually an unbiased Monte Carlo estimator: each

representative, if properly weighted, computed an inbiased estimate of its own
cluster, and

The accuracy of the algorithm is highly dependent on the quality of the
clustering, so we should design it carefully.

11

Visualizing the Reduced Columns

Reduced columns:
vectors in high- Q
dimensional space O

@®
|:|:D:|:|:|:|:|:| visualize as ... Q O °

radius = norm

First, let’ s think about the reduced columns as vectors in a high-dimensional
space.

We’ re going to visualize these high-dimensional vectors as circles.

The radius of each circle will correspond to the norm of the reduced column, or
equivalently, to the brightness of the little image.

The positions will correspond to the positions of normalized reduced columns in
the high-dimensional space.

With a bit of simplification, we can say that circles that are close to each other
represent similar lights, and large circles represent lights with strong intensity.

The Clustering Metric

« Minimize: > cost(Cy)

p=1,....k

total cost of all clusters

e where: COSt(C) = Z w; W; ||XZ _XJ'HQ

/ool N

norms of the squared distance
reduced between normalized
columns reduced columns

cost of a sum over all
cluster pairs in it

We can prove that the following formula gives the optimal clustering that
minimizes the expected error.

So let’ s look at its meaning. We’ re minimizing the sum of costs of all clusters,

Where the cost of a cluster is defined as the sum over all pairs of elements in
the cluster

of the product of norms and squared distance.

This confirms the intuition that strong lights, or lights that are far from each
other, should be in separate clusters.

13

Clustering by Divide & Conquer

This is an NP-hard problem, but a good approximation can be found by the
following divide & conquer algorithm.

We pick a plane with a random orientation. Remember this is in many
dimensions, here I’ Il just visualize it as a line.

Then we move the plane to its optimal position and split the points into two

clusters. There are only n possibilities so we can check them all to find the best
one.

We then continue this process recursively on the cluster with the currently
highest cost.

Full Algorithm

Assemble rows into Cluster reduced
reduced matrix columns

Compute rows
(GPU)

UL - T

[y PSS
Choose

representatives Weighted sum

Compute columns
(GPU)

To summarize, here’ s the full algorithm:

In the exploration stage, we evaluate some rows on the GPU, then focus on the
reduced columns.

We obtain a clustering through the techniques | just described, then pick
representatives.

Finally, we accumulate the corresponding columns with the correct weights into
an image.

Let’s not lose the big picture: all of this is an abstraction that lets us increase the
scalability of an underlying many-light algorithm.

Results: Temple

e 2.1m polygons
* Mostly indirect & sky illumination
* Indirect shadows

Our result: 16.9 sec Reference: 20 min
(300 rows + 900 columns) (using all 100k lights)

The temple is quite a large scene, not only in terms of the number of polygons,
but also its spatial extent. In fact, only a tiny portion of the scene is in view.
Most of the illumination in the scene is indirect or sky illumination, with the only
pixels lit directly by the sun form the small bright patches on the right.

The method can quite effectively pick the small subset of VPLs that captures the
illumination. Many VPLs are either invisible or have a small contribution, and
can be aggressively clustered.

16

Results: Trees and Bunny

* Complex incoherent geometry
e Low rank, not low frequency

222

Our result: 2.9 sec Our result: 3.8 sec

(100 rows + 200 columns) (100 rows + 200 columns)

These scenes are designed to test the algorithm by complex incoherent
geometry, and it works quite welll.

Approaches based on interpolating illumination across coherent surfaces would
have a difficult time rendering these images.

However, our algorithm makes no assumptions about image-space coherence.
In this sense, low-rank light transport can be a better approximation than
smooth, low-frequency irradiance.

17

Results: Grand Central

e 1.5m polygons

* Point lights between
stone blocks

i I . m

—

Our result; 24.2 sec Reference: 44 min
(588 rows + 1176 columns) (using all 100k lights)

This scene, the Grand Central station, is a bit of a difficult case. A unique feature
of thescene are the omni-directional lights positioned in small recesses between
stone blocks.

These lights pose a problem since they violate the low-rank assumption. The
columns corresponding to these lights are pretty much linearly independent.
Therefore, a larger number of rows and columns will be required here, and
some lights are still missing on the left side.

The Value of Exploration

Our result No exploration
(432 rows + 864 columns) (Using 1455 lights)

Equal time comparison

An important question is whether the row sampling step of our algorithm is more
useful than brute force.

Indeed, instead of creating 100,000 lights and trying to pick a small subset of
them, we could simply create a smaller number of lights and render them all.

However, if we compare these images, we find that the simpler approach
produces much more objectionable artifacts despite taking a bit longer.

The Value of Exploration

Our result No exploration

Equal time comparison:
5x difference from reference

Here are difference images as well.

Run MRCS for every frame

* 100 rows, 200 columns per frame

* Flickers too much
— Randomized, no use of temporal coherence

' MAtXIRoWColumn Sampling Reference! v
.. .

Let’'s now turn attention to extending row-column sampling to animation.

Here is what we get by running row-column sampling per frame with 100 rows
and 200 columns.

There is noticeable flicker, which is not a surprise given that MRCS is a
randomized algorithm with no knowledge of the time dimension.

We could fix this by increasing the row and column numbers, but it would be
nice to find an algorithm that takes advantage of temporal coherence.

21

A Tensor Extension

Sequence of matrices Tensor view

» Size of tensor in our results: 307,200 x 65,536 x
40

In row-column sampling, we had a different matrix in every frame. Let’s
concatenate them,

and consider all of them at once as one large 3D array (or tensor) of lights
contributing to pixels over frames.

The amount of data is very large, and we need to avoid constructing the whole
tensor at any point in the algorithm, similar to the matrix case.

22

Tensor Extension - Overview

Sample Reduced Cluster Compute
slices tensor reduced representatives
columns

Reconstruct
full tensor

s T

°

)
] .

Rectangular
clustering

The extension will be done as follows: We compute a set of rows in every frame,
resulting in a set of horizontal slices of the tensor.

Then we cluster the columns of this reduced tensor; | call this a “rectangular

clustering” since every cluster is a cartesian product of a light subset and a
frame subset.

We can then use a similar representative selection and reconstruction as
before, except here we have to be careful, because pixels move between
frames. A pixel mapping trick similar to optical can be used to warp the
representatives to avoid this problem.

23

Splitting a cluster

Pick cluster with highest cost
Try splitting in time
Try splitting in lights
Pick better alternative

Time split

Light split

How do we find a rectangular clustering? This problem is again NP-hard, but we
can adapt the divide-and-conquer as follows.

We will start with all light-frame pairs in one cluster, and keep splitting the
cluster with highest cost until we reach the desired number of clusters.

We will try splitting the cluster in time and in lights, and pick the split that gives
us the better objective function value.

Now the question is, how to split in time and in lights; we can answer this by
trying both splits and seeing which one decreases the objective function more.

24

Results - Iris

* 51k triangles, 65,536 lights
» Deforming objects, high-frequency shadows
* 6.9 sec/ frame (brute-force:

Here is an example animation rendered with this method. On the left is the
result, and on the right is reference with all VPLs, which took about 9 times
longer.

25

Results - Temple

2.1m triangles, 65,536 lights
Sun & sky lighting, moving sun
Multiple indirect light bounces
26 sec / frame (brute-force:

And here is another example with a temple and a moving sun. This one is about
77x faster than the brute-force solution.

26

Visibility Clustering

 Many VPLs needed Lights
for shading %

— Shading is cheap —
shade from all VPLs

e Cannot afford
visibility for every VP

_ V|S|b|I|ty
e Key idea: (representatives)
Separate shading from visibility

Next, | will introduce an interesting variation of the row-column approach that is
some cases more robust.

The design of the algorithm is motivated by several observation on shading and
visibility in glossy scenes.

First, we observe that in glossy scenes we cannot easily pick a small subset
lights to approximate the solution, because shading from the individual lights is
quite different. In other words, we want to compute the shading from all the
global VPLs. And that’s actually doable because the GPU is extremely efficient
at computing the shading.

But we just cannot afford to evaluate a SM for each of those 200k lights! So the
key insight is to separate shading from visibility, use ALL the light for shading,
and only a small number of representative lights for visibility.

Global solution overview

Global VPL Row Reduced
tracing sampling matrix
—— |

ﬁ\ shading
T =

g

- visibility

Visibility Render lights with
clustering reps’ visibility

Here’s the overview of visibilty clustering. We start by distributing the global
VPLs in the scene by tracing particles form light sources. After that, we sample
a number of rows of the interaction matrix, which means that we pick a number
of pixels and for each of them, we evaluate the shading and visibility for all the
lights. That gives us the reduced shading and visibility matrices. The visibility
clustering then analyzes these matrices and yields clusters of lights that will
share the same shadow map. After that, we render all the VPLs with the shadow
map of the representative light for each cluster. This yields the complete global
solution. There’s only one bit that remains to be explained here, and that’s the
visibility clustering algorithm.

28

Visiblility clustering

. clusters

—1 -
visibility

representatives

 Clustering algorithm
— Hierarchical splitting

— Minimize the clustering cost

* L2 error of reduced matrix due to visibility
approximation

The goal of the visibility clustering algorithm is to group VPLs into clusters that
will share the shadow map of its representative VPL. We use a data-driven
approach where we analyze the row samples from the light interaction matrix.

The clustering algorithms proceeds in a top-down fashion, splitting clusters with
highest cost, which is defined as the L2 error of the matrix incurred by the
visibility approximation.

29

Visibility clustering result

Matrix row-
column
sampling

10k shadow maps
10k shading lights

Our visibility
clustering

5k shadow maps
200k shading lights

Here’s a comparison of the result of our visibility clustering with MRCS in the
same time for a simple scene of the happy Buddha statue reflected in a glossy
plane. The MRCS result uses 10k representative lights (i.e. 10k shadow maps
and 10k lights for shading), which leaves visible splotches in the image. The
visibility clustering, in the other hand, uses only 5k shadow maps for visibility but
all the 200k lights for shading, substantially improving the smoothness of the

reflections.

30

LightSlice (Ou and Pellacini)

« Compute standard clustering
* Refine it differently in different “slices”
* Use neighboring slices to get more rows

unknown matrix slicing slice sampling

per-slice
transport matrix

reconstruction

initial light clustering
St
- & ~[L_[
R l

‘ L

per-slice cluster refinement

Another nice idea, published recently in the LightSlice paper, is to refine the
original clustering within “slices” of the image. One problem is that each slice will
only have one row sample, and one-dimensional data is not enough to run a

clustering algorithm. This is addressed by using neighboring row samples to
help.

LightSlice: Results

= LigthSlice
= Lightcut

| §

400 500 600 700
time (seconds)

This works very well - in fact, on this fairly complex scene, the algorithm
seemsto outperform both lightcuts and row-column sampling.

Clustered Visibility (Zhao Dong et al)

(o
R

Trace VPLs K-means clustering

Real-time diffuse
indirect illumination

Soft shadow maps Compute full shading

Another alternative approach | should mention uses no matrix formulations, but
instead uses a simple visibility clustering idea that nevertheless works fine in
simple scenes and can even achieve real-time performance.

The idea is to use k-means clustering for visibility, and render full shading. One
may think that this for highly variable VPL intensities, but for a single bounce,
and one lightsource, one can easily make all VPLs same intensity. The

approach also uses soft shadow maps, so it can get away with pretty small
numbers of shadow maps.

33

Open Problems

How many rows + columns?

— Pick automatically

Row / column alternation
Progressive algorithm:

— stop when user likes the image
Comparison to matrix completion

How to pick the number of rows and columns automatically?

It would be nice to design a variation of the algorithm that alternates row and
column sampling, since knowing some columns might tell us which rows to

sample, but no one seeknows how to do it.

It might also be useful to make the algorithm progressive, so the user can stop
the evaluation when they are satisfied with the image.

We are also interested in developing a temporal version of the technique that
renders multiple frames at once. The problem is — how to do it so that the
representatives do not have to be kept in memory?

Finally, there are some other approaches for matrix completion in the literature,
but we tried them for rendering and they did not turn out to be better. However,
there might be ways to improve them, they just haven’t been studied
systematically.

Real-time many-light rendering

Carsten Dachsbacher

Real-time Many-light Rendering

Real-time Many-light Rendering
Outline

» main difference to ,offline” methods: visibility

» rasterization instead of raycasting

» focus on surface lighting here

» real-time contraints < mostly diffuse scenes
» creating VPLs with rasterization/GPUs
» shading and shadowing from VPLs

» imperfect shadow maps, micro-rendering
» bias compensation in screen-space

Reflective Shadow Map

From-Point Visibility
» one-bounce illumination is caused by surfaces visible in the shadow map
» extended shadow map contains required information

let’s first start with single-bounce indirect illumination, which essentially means placing
VPLs only at surfaces directly visible from the light sources

these surfaces can simply be rasterized, actually these are the surfaces one would store
in a shadow map

Reflective Shadow Map

From-Point Visibility with Additional Information

» store for every pixel

» depth value
» world space position
» normal

» reflected radiant flux

position

In addition to the depth value such an extended shadow map — reflective shadow map -
stores the world space position, the surface normal and the reflected radiant flux for
every pixel.

The world space position could be reconstructed from light source positioning and the
depth value - storing it is just a trade-off between computation overhead and memory
consumption.

So with this data we know everything about the surface to compute single-bounce
indirect lighting.

Now the flux defines the brightness and color of the surface and the normal its spatial
emission characteristics.

Reflective Shadow Maps

From-Point Visibility with Additional Information
» each pixel is a virtual light source
» indirect irradiance from pixel lights

The total indirect irradiance at a surface point could be approximated by summing up
the illumination due to all pixel lights.

If we do not do any additional work, and just use the RSM as is, we cannot consider
occlusion for the indirect light sources and e.g. the floor is wrongly lit on the left side of
the box.

Reflective Shadow Maps

Light Gathering

» sample potentially lights

» pixels close in world space are close in RSM (not vice versa)

0
O
El
O]

o Xy K X
potenial proximity

The classic RSM method performs a gathering approach computing the sum of pixel light
contributions for each pixel in the image by sampling the extended shadow map.

As the number of pixels is typically too large, we reduce the sum to a restricted number
of a few hundred samples, concentrating on the most relevant pixel lights.

In general those pixel lights are relevant which are close in world space and of course
they are also close in the shadow map projection —in reverse this is of course not true.

Reflective Shadow Maps

Light Gathering

» sample potentially lights

» pixels close in world space are close in RSM (not vice versa)

» for classic instant radiosity: pick one set of VPLs for all surfaces

X X X X4
potenial proximity

For this, we precompute a sampling pattern for selecting pixel lights which gets centered
around the projection of the surface point to be lit.

By this, we reduce the number of samples to a few hundred per pixel.

Instant Radiosity

Direct light

But we obviously we are lacking two aspects: mutliple bounces of indirect light and
shadowing of indirect light.

The first problem can be dealt with relatively easily: as in standard random walk...

Instant Radiosity

Multiple Bounces

» continue paths by sampling one pixel in one RSM
» create another RSM

we can pick a random pixel, which maps to a direction, in every such RSM, take the
surface location and orientation from there, and recursively continue rendering RSMs.

Instant Radiosity

This is 30 VPLs. You may need 1000...

Visibility is a problem, as we typically have a large number of VPLs and thus shadow
maps. Even in diffuse scenes, 1000 or more VPLs is common.

10

Instant Radiosity bottleneck

v 1 v

g bty
fysd kpmigdee
2 L ET T TLT T o
Tt Dl bl 2
o dh e @ 4 &0 Fad

» 1024 VPLs

» 100k 3D model

» 32x32 depth map
» ~300M transforms
» 100x overdraw

M i S ot S PP Sl R T
g2 wy v &3 @ 3 MY B0 By A 44 A8 3 O i B4 ey o Sh k& 4 s b AR oy

In fact, this shadow map generation is the bottleneck:
Assuming we use 1024 VPLs and a 100k triangle 3d-model.

First, vertex processing requires to do 300M vertex transforms when drawing all
triangles into all shadow maps.

Second, drawing 100k tris into a 1k texel depth map is a hundertfold overdraw.

Let’s find something better ...

11

Imperfect Shadow Maps

Fast and Approximate Shadow Maps

» observation: low quality (imperfect) depth maps sufficient
when using many VPLs form smooth lighting

» idea: point-based rendering is great for approximate renderings
» main steps of the algorithm

» point-based depth maps

» pull-push to fill holes

What we propose as a solution is based on the observation, that low quality depth
maps are sufficient.
This is, because the individual contribution of every VPL is only small.

Also indirect lighting varies smoothly in most scenes or at least in mostly diffuse scenes.

Our contribution is to allow imperfection when creating a depth maps that allow for a
much more efficient generation.

And this is achieved by using a point-based rendering approach which is typically well
suited when you need LOD and approximate rendering.

The main steps that | will outline here are:

1. Point-based depth map generation
2. A pull-push operation to fill holes from point rendering

12

Imperfect Shadow Maps
Point-based Depth Maps

» goal: Fill ¥1000 depth maps for every frame?

» classic approach takes hundreds of milliseconds for “Sponza”
» as correct as possible
» using only little bandwidth A A S

5 o S b o3 e L
.'i PR LT ET TR TR e

» solution:

» use points (no connectivity)

» roughly as many as there are pixels

»
b g o 5 0 e oy gl o B A
¢-qq2::u-«'vv-unuvd

So the goal is to generate as many depth maps as possible, but each of them is allowed
to be of a low resolution, say 32x32 pixels.
Using classic depth maps for this, takes hundreds of milliseconds for the Sponza scene.

We use point rendering, because point representations decouple from the input
geometry, and they can easily rendered into a single render target for multiple views.
Also LOD for points is very simpler, because they don’t require connectivity.

13

Imperfect Shadow Maps

Point-based Depth Maps
» point-representation: no connectivity, simple LOD

standard rasterization imperfect (point-based)

Here you can see a comparison...

imperfect
(smaller, less points)

14

Imperfect Shadow Maps
Point-based Depth Maps

» point-representation: no connectivity, simple LOD
» paraboloid parameterization

» one projection for entire hemisphere

» no tessellation problem as with
triangles

As surface-VPLs emit into the positive hemisphere, we chose a paraboloid
parameterization of directions.

Points fir this well, as lines map to curves when using this parameterization which can
cause triangle meshes to be problematic.

Further benefits of paraboloid shadow maps are: single-pass/projection for hemisphere,
relatively low distortion.

15

Imperfect Shadow Maps

Point-based Depth Maps
» point-representation: no connectivity, simple LOD

» generated in a pre-process
» ~8k points for every VPL
» different set for every VPLs

The point-representation is precomputed, each VPL has its own randomly created point
set (to avoid banding) of about 8k points.

The image shows one VPL and its point set.

16

Imperfect Shadow Maps

Frame t Frame t+1

.

» store points with barycentric coordinates and triangle 1D

Instead of storing an x-y-z -position for every point, we store it as a generalized
barycentric coordinate instead, that is: a triangle index and a barycentric oord inside this

triangle.
By doing so, the points can naturally follow the deformation of the mesh the

approximate.

17

Imperfect Shadow Maps

Pull-Push Steps
» depth maps from points have holes

triangle rasterization without pull-push with pull-push

While this is a classic depth map, drawing a low number of points leads to holes, such
as in this example.

We fill those holes using a pull-push step, similar to Grossman/Dally, to fill holes.

To this end, we build a pyramid of depth values, where we average only valid depth
values in a pull step.

In the subsequent push step, every undefined pixel a every level, is replaced by the
average of the defined pixels.

18

Imperfect Shadow Maps

Pull-Push Steps
» depth maps from points have holes

triangle rasterization without pull-push with pull-push

[1 B [

Here we show the imperfect shadow of an individual VPL.
A depth map without pull-push will have light leaks, that are fixed by pull-push.

However, pull-push sometimes miss-classifies depth values, and gives false positive or
false negatives.

Small holes might be ,,real” holes and small objects could be isolated, pixel-sized floating
objects.

If such miss-classification happens, the only negative result is, that such objects will not
cast shadow or let light through, which is not very important, because they are small;
we have many VPLs; and such errors are uncorrelated.

19

Imperfect Shadow Maps

Pull-Push Steps
» ...on all depth maps in parallel

without pull-push with pull-push

We do this pull-push step on all depth maps in parallel.

As we work in depth map space now, we are now independent of the geometric
complexity: It is irrelevant if this is an image of a Cornell Box or an XYZ dragon: it’s just
an image.

20

Imperfect Shadow Maps: Results

j I » [/
/
1 |rl |
cornell box I L
W [sponza

)

horse

multiple ‘ : complex, local
bounces i ' \: . area lights

natural
illumination

| caustics

Let me now present some of our results, which range from diffuse bounces in a Cornell
box to complex scenes, including multiple bounces, arbitrary local area lights, natural
illumination to caustics.

Here are animated meshes inside the Cornell box with a dynamic direct light.

Most of the light in this scene is indirect.

Note, how the animals feet cast high-frequency shadows, whereas the animal itself casts
a correct soft shadow.

Also note, the subtle variations in shadow color.

Despite the fundamental changes, in indirect lighting there is no flickering.

22

This is a more complex scene, where a cloth deformation is placed inside the well
known Sponza model.
To achieve sufficient temporal coherence, we need 1024 VPLs in this example.

Note, how the bounced light color changes drastically when the cloth is moving.
Note, the indirect shadow from the columns.

23

In this example, we did not use global illumination, but direct natural illumination from

an environment map.
Distant light sources are placed on an environment map, with an orthographic shadow

for each.

24

In a similar way, we can generate local soft shadows from complex area lights, with
varying color.
We discretize the area light into several point lights and compute and ISMs for each.

25

Finally, we are not limited to Lambertian VPLs.
Here, we use a Phong distribution, to compute one glossy bounce with full indirect
visibility which is usually ignored.

26

Micro-Rendering

Motivation

» imperfect shadow maps use low-quality point-based rendering

» methods with quality comparable to triangle-based rendering exist
hierarchy of point samples, e.g. Q-Splat

Bigger
than pi,{el

Bigger Bigger
than pixel than pixel
\ / \ $ Blgger
than pixel

Pixel-sized

//\//‘\\\

o_©0

Pixel-sized Pixel-sized Pixel- SIZEd P:\e sized

ISMs are based on quickly creating shadow maps from a point-based representation, but
point-based rendering is not necessarily of low quality or exhibiting holes.

Typically points are organized in a hierarchy to allow for choosing the required level of
detail on the fly. The classic example is Qsplats where the refinement criterion is the size
of a point primitive on the screen.

27

Micro-Rendering

Motivation

» render high-quality environment maps for gathering incident light
» can also be used for “flawless” shadow maps or gathering from VPLs

The idea of micro-rendering was initially to do final gathering — we will see how this is

related to many-lights rendering in a minute — by creating many small renderings of the
incident light at many surface points.

Once we have a micro-rendering, this small frame buffer with incident light, we can
concolve it with the BRDF to compute the reflected light.

28

Micro-Rendering

£
w
b
=3
L0
[F]
=
o
—
b
(o]
(=
S
=

It essentially uses a Qsplat like point hierarchy and rendering technique, here illustrated
in 1D.

The micro-framebuffer is on the left and we consider this little binary tree of points
(circles) on the right.

This tree as a 2d bouncing volume hierarchy, looks like this.

29

Micro-Rendering

- @
g4
= =]
o
@ =
c a
A @
19 o
o [
o] 2
: o
@ =
=

To resolve occlusions correctly, we also use a micro-depth-buffer.
In this example, the white and blue nodes fall into a single pixel, but using the depth
buffer, the correct ordering canbe resolved.

30

Micro-Rendering

Tree Representation

position, radius
normal cones \/ \\ ‘/ \ N k b | ... millions of ...

average intensity

We use a complete binary tree to store the geometry into a texture.

We store node position and radius, as well as normal cones for each node.

31

Micro-Rendering

Preventing Holes

= =
GLI w
E= b=
o i)
@ =
= B
® a
= =
T
o (=]
S 5
E £

Doing all this, there is one special case that needs consideration: If a node is very close
to a receiver it might become bigger than a micro-pixel.

We tried several established procedures form point rendering, including the pull-push
we used in imperfect shadow maps, but the most accurate and reliable method was to
raycast such surfels as small disks.

Please note, that such raytracing does not mean we have to find an intersection for the
entire scene in some directions. It only means, that we need to find the intersection
point of one direction and handful of disks.

32

Micro-Rendering

Preventing Holes

» ... by ray-casting

without ray-casting with ray-casting

Let me show some examples, how this is useful.

Those images might look similar, but in corners, where Gl is difficult, prominently for

VPLs, they are different.
Without raycasting, the nearby surface has holes, that can be filled by raycasting.

33

Micro-Rendering

Comparison ISM vs. Micro-Rendering
» ISM: visibility at VPLs (left)
» micro-rendering: visibility at/near shading points (right)

For final gathering, micro-rendering is clearly better, as it resolves visibility at surface
locations, thus capturing occlusions better.

34

Micro-Rendering

Multiple-Bounces

» use point-hierarchy for radiosity-style light transport

2 bounces

2 Ips

Since we store a point hierarchy (with additional information such as color/BRDF,
orientation) we have all information to compute a radiosity-like energy transfer.

That is, from direct illumination, we can compute point-to-point transfer, also multiple
iterations and thus achieve multiple bounces — just as an excursus.

35

Micro-Rendering

Final Gathering
» use point-hierarchy for visibility
» gather energy from visible photons or VPLs

More interesting for many-lights methods are two things:

1. we can render high-quality shadow maps quickly
2. we can use final gathering like lighting by using micro-rendering to resolve visibility
from a surface point to other surfaces and thus also to VPLs residing there.

There are also further extensions that I’'m not mentioning today, e.g. micro-rendering
can also account for the BRDF and warp the micro-buffer essentially to do importance
sampling.

36

Light Transport

» rendering equation:

L(x+y)=Leo(xy)+/[fr(xy+2)G(y+2)V (y«<2z)L(y+z)dA
J A

emitted light reflected light

Now that we “solved” the problems of creating and using VPLs, | would like to address
the issue of quality or correctness a bit more, speaking about bias compensation and
how this can be done in interactive applications.

37

Light Transport

» rendering equation:

L(x+y)=Leo(xy)+/[fr(xy+2)G(y+2)V (y«<2z)L(y+z)dA
J A
emitted light reflected light

» operator notation [Arvo et al. 1994]:

(TL)(x«y) = /4 fr(xey«2z)G(y+2z)V (y-z)L(y«z)dA

L =Ll

well, the rendering equation...

38

Many-Lights Rendering

» create virtual point lights as before

» we assume to use VPLs to approximate indirect illumination L only

distribution of VPLs

creation of random walks (here we simply assume that this can be done, no matter if
using ray casting or rasterization)

39

Many-Lights Rendering

» create virtual point lights as before

» we assume to use VPLs to approximate indirect illumination L only

distribution of VPLs

creation of random walks (here we simply assume that this can be done, no matter if
using ray casting or rasterization)

40

Many-Lights Rendering

» create virtual point lights as before

» we assume to use VPLs to approximate indirect illumination L only

distribution of VPLs

creation of random walks (here we simply assume that this can be done, no matter if
using ray casting or rasterization)

41

Many-Lights Rendering

» create virtual point lights as before

» we assume to use VPLs to approximate indirect illumination L only

L=1I.+TI
L =1, - Threrl

E
¥

distribution of VPLs

we assume to use VPLs to approximate indirect illumination only — direct illumination is
typically computed using dedicated methods with some shadow mapping variant.

42

Many-Lights Rendering

» create virtual point lights as before
» we assume to use VPLs to approximate indirect illumination L only

L=1I.+TI
L =1, - Threrl

gion

issioN aation xion
girect BT o

indirect

Let’s see what happens when computing the indirect light...

here everything is fine, just accumulate the contributions from all VPLs.

43

Many-Lights Rendering

» create virtual point lights as before

» we assume to use VPLs to approximate indirect illumination L only

L=1I.+TI
L =1, - Threrl

cecion 5 _t'\o"\ ion
LSS inate inath
dire® € frect "‘\Ug':f ect ur®

i

.. here it is different...

44

Many-Lights Rendering — Singularities

L=L.+TL HTL

transport operator: N

(TL) (xey) = z fr(xeye2z: G (yoz:)V (yozi) » (y+2zi)

i

7=

geometry term: _ COS+ (6)3) C DS+ (0,.)

(e

ly — 2

... here it is different... as there’s a nearby VPL, which — because of the geometry term —
will create a bright splotch.

45

Artifacts - Splotches

reference (slow) rendering fast rendering with less VPLs clamping VPLs’ contribution

clamping the contribution of nearby VPLs
by bounding the geometry term

the naive solution — as we have seen — is to clamp the VPLs’ contributions...

46

Artifacts - Splotches

reference (slow) rendering DIFFERENCE clamping VPLs’ contribution

clamping removes short distance light transport.
How do we restore the missing energy?

however, bounding the geometry term introduces a systematic error.

* Infact, we remove a short distance light transport
* The bias is visible as artificial darkening around concave features

47

fulltt: L, +TL,+ TL

ii

2
[
-

M-

bounded indirect LT: L. + T L. +

Il
=

residual indirect LT: ", L

"

): user-defined bound

We can now have a closer look what’s happening when clamping.

The clamped transport operator T_b describes VPL lighting with clamped contributions
and is shown on the slide.

We can now define another transport operator (T_r for residual transport), which
describes just this amount of light which has been clamped away.

48

49

Light Transport

Lot Th, + T, L8

Here you can see how these transport operators related to each other

50

al Light Transport — Previous Work

bias compensation via tracing additional rays

» indirect illumination for residual transport
computed via path tracing

unbiased but computational very intensive (~“hours)
» infeasible for interactive applications

L=1L.+TL -+ 30

L =L,+TL: 4+ T L N

computed using path tracing

The standard way of compensating the bias — the error due to clamped-away energy — is
what we have already seen in the previous parts.

51

al Light Transport

Reformulated Bias Compensation:
» motivation: » solution:

» restore energy, remove bias » re-use the existing (clamped) solution
¥ interactive frame-rates ¥ iteratively apply the residual transport

L=L.+TLa el L—"1.)

L‘ _— L‘n‘-‘: + Z i.(TL'F: + f‘)

=0

compute once
apply iteratively

design choice: compute and apply in screen-space

We have shown that you can compute the bias compensation differently (see paper for
details).

The reformulation itself does not tell you how to actually compute it, but it was done
having in mind that we render an image with clamped VPLs first, and then use only this
operation to recover the missing energy.

52

Algorithm Overview

P precomputation:
1. distribute VPLs (as before)
2. create an imperfect shadow map for every VPL

» rendering:
1. render the scene to find visible surfaces

2. apply deferred direct and bounded VPL lighting TL, + ‘I

3. N-times in screen-space:

compute residual transport and add it to the image

Sl)

This is the algorithm overview...

i

53

Screen-Space Integration

» FOR EACH pixel:
» iterate over neighboring pixels
B IF G(xey) > b :
» add contribution in “radiosity style”

camera ciew

54

Screen-Space Integration

» FOR EACH pixel:
» iterate over neighboring pixels
B IF G(xey) > b :
» add contribution in “radiosity style”

-

. (fy) - b\) Afr i

5
x -yl

"(0x) cos

G-buffer stores all necessary information.

55

Screen-Space Integration

» FOR EACH pixel:
» iterate over neighboring pixels
P IF G(xey) > b :
» add contribution in “radiosity style”

we are only interested in the clamped energy

side view

56

Screen-Space Integration

» FOR EACH pixel:
» iterate over neighboring pixels
P IF G(xey) > b
» add contribution in “radiosity style”

clamping occurs in a close neighborhood only!
close in world space = close in screen-space

_cos™ (0x)cos™ (Oy)

3
Ix =yl

we can conservatively estimate a bounding radius
and restrict the integration to it

57

Screen-Space Integration

» FOR EACH pixel:
» iterate over neighboring pixels
P IF G(xey) > b
» add contribution in “radiosity style”

clamping occurs in a close neighborhood only!
close in world space = close in screen-space

_cos™ (0x)cos™ (Oy)

3
Ix =yl

we can conservatively estimate a bounding radius
and restrict the integration to it

58

Hierarchical Integration

» still too many samples (even with the bounding radius)
» multiresolution top-down integration (in spirit of [Nichols et al. 2009])

P requires
» a mip-map chain of the G-Buffer and bounded illumination

» discontinuity buffer

In order to speed up the rendering we use a hierarchical screen space approach inspired
by multiresolution splatting of Nichols and Wyman, please see the paper for details.

59

Hierarchical Integration

coarsest level

bias compensation for this pixel

60

Hierarchical Integration

limit the integration domain

coarsest level

Compute a conservative bounding radius outside which, none of the pixels can
contribute the to compensation

61

Hierarchical Integration

for each pixel
if possible add contribution
else refine

1 : non-zero contribution
0 : zero contribution
R : must be refined

» refine if
» G-term too large
» discontinuity

coarsest level

If possible:
Gterm not too high, otherwise error
No discontinuity, otherwise data in G-Buffer inaccurate

62

Hierarchical Integration

finer level

refine

63

Hierarchical Integration

finer level

for each pixel
if possible add contribution
else refine

1 : non-zero contribution
0 : zero contribution
R : must be refined

» refine if
» G-term too large
» discontinuity

64

Hierarchical Integration

finest level

refine

65

Hierarchical Integration

finest level

for each pixel
add contribution

1 : non-zero contribution
0 : zero contribution

66

S
&
>
S
Q
>
@)
|
=
S
el
(0
S
oo
Q
d
=
©
-
L5
[®)
B
m
[
2z
. =

67

Hierarchical Integration — Evaluation

number of samples (per pixel)
Happy Buddha

Stairs Scene
Tori

number of levels in the hierarchy

The hierarchical integration obviously reduces the computational demands, while not
degrading the quality noticeably.

68

Hierarchical Integration — Evaluation

number of samples (per pixel)

The number of samples (i.e. queried pixels) has important impact on the rendering
performance and is shown here.

69

Rendering Results — Dragon

Bounded Light Transport Residual Light Transport

rendered with: no SSBC
1024768 at: 10.3 FPS

These are some results showing the clamped image, recoverd energy, and final image.

70

Rendering Results — Dragon

15t step of SSBC 2"d step of SSBC

rendered with: no SSBC
1024768 at: 10.3 FPS

Multiple iterations recover more energy, but the additional energy drops exponentially
because of the transport operator (the BRDF in there respectively)

71

Rendering Results — Tori

Bounded Light Transport Residual Light Transport Final Image

il TS,
rendered with: no SSBC ep SSBC
1024768 at: 16.4 FPS 12.1 FPS

These are some results showing the clamped image, recoverd energy, and final image.

72

Rendering Results — Crytek Sponza

Bounded Light Transport Residual Light Transport Final Image

rendered with:
1024768 at:

These are some results showing the clamped image, recoverd energy, and final image.

73

SSBC Timings

Tori
1531 VPLs, 106 ms

Crytek Sponza
1862 VPLs, 332 ms

Dragon
1486 VPLs, 156 ms

Computing the illumination due to VPLs is still the most costly part of the algorithm, i.e.

bias compensation is really not expensive to add when computing it in screen space.

74

Comparison — [Kollig and Keller 2004] vs. SSBC

Compensation Only

Bias Compensation
[Kollig and Keller 2004]

CPU ~ 10.9 hours
(8-core, 4GB RAM)

Screen-Space
Bias Compensation
(3 steps)

GPU ~ 550 ms
(ATI Radeon HD 5870)

Comparison to ray casting based bias compensation illustrating the impact of a screen-
space approximation of the scene’s surfaces.

75

Artifacts in Screen-Space Integration

» sources of artifacts:
» surface sampling at grazing view angles

work-around: conservative bias compensation

screen-space approximation of the scene’s surfaces means: not information about all
surfaces in the scene and irregular sampling of the scene’s surfaces.

Surfaces seen under grazing angles are overestimated, as a pragmatic solution, we
bound their contributions.

76

Artifacts in Screen-Space Integration

» sources of artifacts:
» surface sampling at grazing view angles
» hidden surfaces

missing
compensation

work-around: use multiple viewports

And of course we have not information on hidden surfaces.

Note the screen-space approach is a design chose, the reformulated compensation
would work with other representations (e.g. finite elements) as well.

77

Conclusion
Many-Lights Methods and Interactive Applciations

» its all about visibility computation

» rasterization to resolve from-point visibility

B image-space techniques can also be used to accelerate bias
compensation

78

Many-lights methods in
Autodesk 360 Rendering

Adam Arbree

)
r "cmud Platforms Autodesk

This final section of the course discusses the use of many lights algorithms in our cloud
rendering service, Autodesk® 360 Rendering.

Autodesk® 360

» Cloud Application Suite
» Goals
= Storage
= Sharing
= Collaboration
* Integrated into our core
desktop applications

P11

¥ Cloud Platforms Autodesk

To begin | want to quickly introduce our service to illustrate the challenges that many lights
algorithms help to us address. Our service is a component in a system of cloud applications,
called Autodesk 360, launched last March. The goal of the system is to provide a suite of
tools, accessible everywhere through web and mobile front ends, that allows users to
store, share and collaborate on projects using our software. Our desktop applications are
integrating with this cloud system to enable a seamless transition between local work and
the cloud resources.

Autodesk® 360 Rendering

Autodesk® AutoCAD® 2013

Render Gallery

r .’cm ud Platforms Autodesk

For rendering specifically, we have added cloud rendering options, mirroring to the
previous desktop rendering options, to our Autodesk® Revit® and Autodesk AutoCAD®
applications. Users can use these cloud rendering tools to upload and render their models
remotely in the background. Completed renderings become available in our render gallery
website where they can be viewed, modified and re-rendered with a list of advanced
features, such as panorama views.

Autodesk® Homestyler®

Autodesk® Hom

The fast, easy way to
design your dream home

Explore the zon
House Beautiful

T)
r "cmud Platforms Autodesk

In addition our service provides back-end visualization support for consumer products such
as Autodesk® Homestyler®, a tool lets users build and render their own interior design
plans.

Goals of Our Service

Architectural & Design Render Quickly, Anywhere
(i.e. Predictive)

Scalable Efficient

r .’cm ud Platforms Autodesk

Working back from these applications, we can sketch out the goals of our cloud rendering
system. First we focus primarily on architectural and design visualization. This focus is both
challenging, because these applications demand higher-quality, predictive simulations, and
simplifying, because these applications use a reduced palette of materials, lights and
geometry that are generally physically modeled. Second, we want to make rendering a one-
click option available anywhere in any product. This allows us to support consumer
applications, such as Homestyler, and challenges us to make rendering simpler and easier
to use. Third, we need our renderer to scale. Our users turn to the cloud to render their
largest and most complex scenes, those beyond the capacity of their desktops, and they
expect results quickly. And, finally of course, we need the renderer to be efficient since
Autodesk bears the cost of the cloud compute resources.

Problem

How to automatically, efficiently and reliably
produce a large number of physically-accurate

—renderings ina predictable amount of time? ————

Solution?

Use a many-lights rendering algorithm.

r .’cmud Platforms Autodesk

Now, meeting these goals can be consolidated into the central problem of our cloud
rendering application: how can we automatically, efficiently and reliably produce a large
number of physically-accurate renderings in a predictable amount of time? For our
application, the solution to this problem was largely to use a many lights rendering
algorithm. This talk discusses how we implemented many lights rendering in our system
and why is was critical to our success.

Overview

- g = lJ I

Our Algorithm Advantages of
Many Lights

r .’cm ud Platforms Autodesk

This talk will have two parts. The first part discusses the rendering algorithm we built at
Autodesk and some of the implementation issues we addressed when developing that
system. Then the second part discusses the advantages a many lights rendering algorithm
brought to our application. The overall point of this second discussion is that many lights
algorithms have proven to be faster and are fundamentally more scalable. Our results show
that this holds true across a very wide array of images and scenes. However, since raw
performance has been discussed at length in this course, this talk will focus on additional
consequences of that scalability. Specifically, the goal of this talk is to describe how these
algorithms also improve the reliability and predictability our rendering system and how
their advantages have been critical to the success to our service. They have helped us to
make rendering easier for novice users, to provide more consistent results for our
customers and to improve the quality of images under fixed cost constraints.

Rendering Algorithm

MDLC +Splitting +VPL targets +VSLs

r "cm ud Platforms Autodesk

Our service uses Multidimensional Lightcuts to compute its images. We implemented
virtual spherical lights instead of VPLs to avoid some clamping and reduce the appearance
of corner darkening. Our basic implementation is essentially identical to those described
earlier in the course. However, in implementing these algorithms, we needed to address
three important issues. First, we needed to add some form of bias compensation to better
render glossy materials, particularly when there are glossy inter-reflections. We introduce
an eye ray splitting heuristic solve this problem. Second, many scenes had difficult lighting
occlusion and we faced issues generating robust VPL distributions. To generate more
efficient VPLs sets, we added a VPL targeting method. Finally, we needed support for
directional point light emission so we created a simple directional VPL type.

Issue #1: Glossy Objects

Basic VSLs Our Solution

r "cm ud Platforms Autodesk

High gloss materials are common in our scenes. We found that clamping, sufficient to avoid
noise, could significantly effect a material’s appearance and that VSLs alone could not solve
the problem (see the image on the left above and note the missing reflections of the glossy
highlights in particular). To address this problem, we recursively continue our eye paths for

glossy materials.

Solution #1: Eye Ray Splitting

mirror

= Split and recursively trace eye
rays for glossy materials

= Heuristic determines split rate
from material’s glossiness

= Increase maximum cut size to
accommodate increased sampling

r "cmud Platforms Autodesk

This recursion is identical to the recursion used for delta specular materials. When an eye
path hits a sufficiently glossy surface, instead of creating a gather point immediately, we
sample secondary rays and continue. The number of secondary rays and the decision to
split is determined by a heuristic. Unfortunately, splitting does increase cost significantly;
requiring an increase in the allowed maximum cut size.

10

Issue #2: High Occlusion

Our Solution Naive MDLC

r .’cmud Platforms Autodesk

Our second issue was large scenes with significant occlusion to the lighting. In this
example, we have a large office building model. In this image we are viewing only a single
hallway in the model. Without modification to the VPL tracing algorithm, it is difficult to
generate a sufficient density of VPLs in this region; instead VPLs are distributed over large
regions of the model out of frame. As can be seen on the left side of this image, these low
densities result in a negative, darker bias and banding artifacts on the ceiling. To address
this issue, we resample the VPLs to ensure a higher density near the camera. To do this, we
use a VPL targeting method to redistribute these VPLs. Empirically we have found that this
targeting reduces bias, improves quality and reduces cost.

11

Solution #2: VPL Targeting

= Modeled on pl

= Two pass algorithm iy B

= 1° pass: Trace eye ray samples

= 2" pass: Use importance
density estimates to reject
VPLs with Russian roulette

r "cmud Platforms Autodesk

Our targeting method uses image importance to estimate the quality of a potential VPL.
This method is modeled on methods for photon mapping with importance discussed by Per
Chirstensen (Christensen, P. “Adjoints and Importance in Rendering: An Overview.” TVCG
9(3). 2003.) . Our targeting algorithm splits the VPL tracing into two passes. In the first
pass, importance carrying paths are generated from the eye. Exactly as in photon mapping,
the resulting set of intersections (“importons”) is stored and placed in a hierarchical
acceleration structure. During the second VPL tracing pass, this importon map is queried to
estimate the local importon density and we use Russian roulette to reject VPLs in low
density regions.

12

Issue #3: Directionally Variant Lights

= Measured light emission -----
profiles are commonly used

= Easy to add

= Use the material bounding
cube map to bound the light
emission function

L 4 I | Il |

r .’cmud Platforms Autodesk

Finally, many of Autodesk’s products support directionally emitting point lights and we had
to implement a VPL type that could represent them. We found that the omni-directional
VPL described in the original Multidimensional Lightcuts paper could be trivially extended
to model directional emission. The only issue was bounding the light’s emission function.
To do this, we repurpose the cube maps that bound material reflectance also bound
emittance.

13

Typical Results

1,000’s of images/day
150s/megapixel (64 cores)

15t million images this year

=

r ‘”cm ud Platforms Autodesk

The results from our first few months \have been robust and promising. We produce
images using small clusters. Globally the cluster size is heterogeneous but on average we
allocate 64 cores per image and produce a megapixel in 150s. Every day we render several
thousand images and we should produce our millionth image sometime this year. The
images on this slides are typical results shared by our customers.

14

r ”cm ud Platforms Autodesk

A selection of images rendered by customers of 360 Rendering and shared on our
Facebook® page (as of mid-May 2012).

15

Overview

.

Advantages of
Many Lights

¥ Cloud Platforms Autodesk

In the second part of this discussion, | want to highlight the advantages of the many lights
rendering algorithm in our application.

16

Advantage #1: Performance

Many Lights

r ‘”cm ud Platforms Autodesk

Undoubtedly, the most important advantage of the many lights system is its performance.
This point has been emphasized throughout this course but | want to reiterate it one last
time. The performance advantages these algorithms have been significant and meaningful
to our application for Autodesk. Not only has the performance impressed our customers
but it has significantly reduced our costs. Every CPU/second our renderer saves is a
CPU/second we don’t have to buy and these algorithms save a lot of them. This is
extremely valuable. However, since the performance has been stressed throughout the
course, | want to take the remainder of this talk to discuss several additional advantages of
these algorithms.

17

Advantage #2: Automatic Rendering

» Configuring a render can
be a challenge...
= Requires expertise

= Time consuming

= Especially in design
visualization where users
want predictive images.

Render Options
in Autodesk®
3D Studio Max®

r .’cm ud Platforms Autodesk

The first of these is that many lights algorithms are easy to automate. You can leverage
their scalability, not just to make the rendering faster, but also to make the process of
rendering easier. First, | note that configuring a render is a challenging task. On this slide, |
have lined up the render options available in Autodesk® 3D Studio Max® (there are a lot of
them). For an expert user, the complexity of these controls is extremely useful. They can
tune the renderer to achieve an certain artistic look, tailor the simulation to be maximally
efficient for a particular scene and selectively downgrade the computation for pre-
visualization. However, for novice users these controls are confusing and, moreover in our
cloud application, they are somewhat unnecessary. Users assume that in the cloud there
are enough resources to compute their image and they are less concerned with
performance tuning options. Our users just want a certain predictive quality without a lot
of effort.

18

Advantage #2: Automatic Rendering

r\\ VPL Tracing Refinement

® 0 9@ 0o 0 0 o
Eye Tracing

Sampling Accuracy Evaluation Accuracy

r .’cmud Platforms Autodesk

Conveniently the structure and scalability of many lights algorithms make this easy to
achieve. One can divide a many-lights algorithm into two components. The VPL tracing and
the eye ray generation represent a sampling component. The evaluation of the samples to
generate an image is a second component. Largely users care about the how the second
component behaves. It encapsulates an intuitive quality/cost tradeoff. However, only
expert users understand how to correctly tune the first sampling component. Most users
just want it to be set “correctly”.

19

Advantage #2: Automatic Rendering

» Many-lights algorithms
facilitate automation
= Set conservative sampling

= Hide complex details the user
= Use predefined quality settings
for eye sampling rate and error
thresholds
= Rely on the scalable evaluation
to avoid extra work Render Options
in Autodesk®
360 Rendering

P11

¥ Cloud Platforms Autodesk

With many lights, we can do exactly this. In our application, we can permanently set
conservative, “correct” VPL and eye sampling parameters internally in the renderer. This
hides detailed mathematical information about our algorithm from the user. Instead we let
the user control quality and time by choosing from a predefined set of quality choices
controlling the error-bounds, cut size and sampling rates. This works because we can rely
on the fundamental scalability of the renderer to avoid extra work if our sampling is a little
too conservative. This lets the user focus on more intuitive parts of their request (see our
render settings dialog) such as image size, quality and format.

20

Relative Render Time By Quality

2
2
1,5
L —

0,5 ——

Standard ‘ High Best

Rel. Cost . 1 |

6

|

Rel.Cost | 1 1,6 2,1 0L
1000's of VPLs 125 00 00
16 64™

Eye Samples 1 |

Max Cut Size | 1024 | 16384 16384

¢ .’cm ud Platforms Autodesk

| can demonstrate that this works well in practice. Here we look at the relative render times
per megapixel for approximately 50,000 jobs rendered in April 2012. The results
demonstrate two important features of a many lights algorithm. One, fixed conservative
setting reliably produce images across a wide range of scenes. Two, the algorithms robustly
avoid extra work: the highest quality is, on average, only 2x the cost of the baseline despite
many more VPLs, eye samples and a much larger maximum cut size.

21

Advantage #3: Supports Design-size Models

Models have many purposes.

Rendering should have minimal
impact on these other applications.

r ‘”cm ud Platforms Autodesk

The third advantage of many lights technology is related to the last. Our users are building
models for a diverse set of purposes. For example, architects and engineers use our
software to make products or a buildings. Rendering these models should not interfere
with these other purposes but this is not always true. Making a rendering can require the
user to annotate daylight portals, create sectioned models (shown here bottom left) or
enable/disable lights. However, the scalability of many lights algorithm bridges this render
model/design model gap. The scalability lets our system robustly support “design” size
models, reducing user effort and encouraging them to use rendering more.

22

Advantage #4: More Predictable Cost

Day (sky on) Night (sky off)

Sectioned

]
©
(=]
=
=
(s

r ‘”cm ud Platforms Autodesk

Additionally, the scalability of many lights algorithms makes rendering costs more uniform
and predictable. This is important because our users want to use rendering to explore
visual design options: lighting, window placements and building layout, for example. But
this is harder to do if there is a huge variation in the cost of rendering these options. By
making rendering more scalable and uniform, many lights algorithms allow our users to
more freely render intermediate designs and enable them to use rendering to inform their
designs rather than just to visualization the final choices.

To illustrate this point, | rendered the same scene four times. In the left column, the
procedural sun and sky is enabled and in the right it is off. In the top row, the model has
been sectioned so that only the visible region is used for simulation while in the lower half
the full model is preserved (including many light fixtures out of frame). Of course, costs
increase with the increased geometry and lighting but they do so slowly. The increased
render time is far outweighed by the time the user saves building the sectioned model or
disabling light fixtures.

23

Relative Render Time by Lighting

i L L
o (B w W,

=

>
=£
v
S~
=
[72]
=]
-
(1]
2 .
-
Ly
Q
o
™
7]
=]
(%]

=]
o un

T 1 T T T T T = = | 1
<1 12 23 34 45 56 6-7 7-8 89 9-10 >10
Bins of Lights By 100s

P11

¥ Cloud Platforms Autodesk

But one example is not as compelling as a thousand examples. | can continue this
uniformity argument to a database of approximately 20K images. Here | plot the relative
cost of adding lighting fixtures to scenes. In this sample, it turns out that sun/sky models
have the lowest cost so | normalized this plot to show the relative cost of rendering models
with only sunlight compared to those with both sunlight and fixtures. The models are
grouped into bins of 100 fixtures each. The leftmost bin includes those scenes with less
than 100 and the rightmost is scenes with more than 1000. Overall the results show
remarkable consistency in the rendering cost across the whole range. This is the advantage
of a many lights approach.

24

Advantage 5: High Quality Preview

Autodesk ® 360
Renderer

Path Tracer
with Irradiance
Caching

r ‘”cm ud Platforms Autodesk

Finally, the last advantage is one of the biggest: the performance of the algorithm at low
quality. This is very critical for our cloud application because we need to offer cheap, fast
renderings, useful for intermediate feedback, that are predictive of a long-running, high-
quality final result.

This slide compares this cost/quality tradeoff for our system (top) and a path tracer with
irradiance caching (bottom). The images on the right are final quality and cost 10x more
than the images in the leftmost column. (Note: columns are equal time comparisons
between the two renderers; and the underlying material system for the two renderers is
not the same so the teapot and table appear slightly different.) Because we can keep the
VPL sampling rate the same across this whole set (VPL cost is included in the timings), the
many lights solution tends to preserve the lighting quality and appearance across the
whole range. However, the path traced solution becomes negatively biased as the
irradiance cache sampling rate and density become low.

25

Problem — Revisited

How to automatically, efficiently and reliably
produce a large number of physically-accurate

—renderings ina predictable amount of time? ————

How to you make rendering a service?

r .’cmud Platforms Autodesk

To conclude this talk, | return to the problem I discussed at the beginning. How to you
make rendering accurate, fast, automatic, efficient and reliable? Or more succinctly: how
do you make rendering a service? That is our goal at Autodesk.

26

Conclusion

» Many lights algorithms have been crucial to our success.

» Advantages
= Robust and well-researched technology
~ = Faster, cheaper and more efficent
» Enable automatic render configuration
= Inherent amortization across quality levels and scenes
= Easier for novice users
= High quality preview images

r .’cmud Platforms Autodesk

Many lights algorithms begin to make these type of service a reality. Our case study at
Autodesk demonstrates that many lights rendering is a robust and well-studied technology
ready for production. Moreover we have demonstrated that the technology has many
significant advantages. It:

-- Is faster, cheaper and more efficient;

-- Enables automatic render configuration;

-- Provides inherent amortization of costs across design and quality options;
-- Makes rendering easier for novice users; and

-- Produces useful preview images at very low cost.

27

Future Work

= \VPL Generation
= Estimates of VPL/VSL error
= Generalized targeting
) VPL Generation
= Error and Refinement
= Quantification of error

= Faster convergence
= More efficient trees
= Representative selection _ [
: . .-, b ks]
= Refinement ordering _

Error and Refinement

r .’cmud Platforms Autodesk

Of course, the work is never done. To close | want to highlight two issues that would
considerably improve our system. Foremost, general VPL targeting is an unsolved problem.
Fundamentally, we need methods to assess the error of a particular set of VPLs and to
generalize the targeting process to reduce this error. Second, there seems to be room for
further performance improvements in the cut refinement process. One, if we could
estimate the absolute error of an intermediate cut, we could begin to quantify the absolute
accuracy of many lights methods. Also we want to continue to investigate whether
efficiency could be improved by altering the VPL trees, representative selection or cut
refinement ordering.

28

Autodesk

r "cm ud Platforms Autodesk

29

